1 Bioenergetics

Understand Energy Systems

- Start with anaerobic glycolysis
 - Pyruvate to lactate and reduced form added 2 H+
 - Leading to blockage of muscular contraction
 - Increasing Fatigue
- Fitness Fatigue Decreasing Rate/Amount of Fatigue
 - Fitness adaptation is contingent upon relative level of fatigue
 - Reduce fatigue by increasing other attributes of fitness
- Vertical Integration Increasing Recoverability
 - Aerobic glycolysis is a vertical integration of anaerobic glycolysis becomes it limits accumulation of H+ and decreasing of pH
 - Increase Recovery from Anaerobic Exercise

Overview

ESD - Optimize Volume/Intensity Intra/Inter Session

- What is needed?

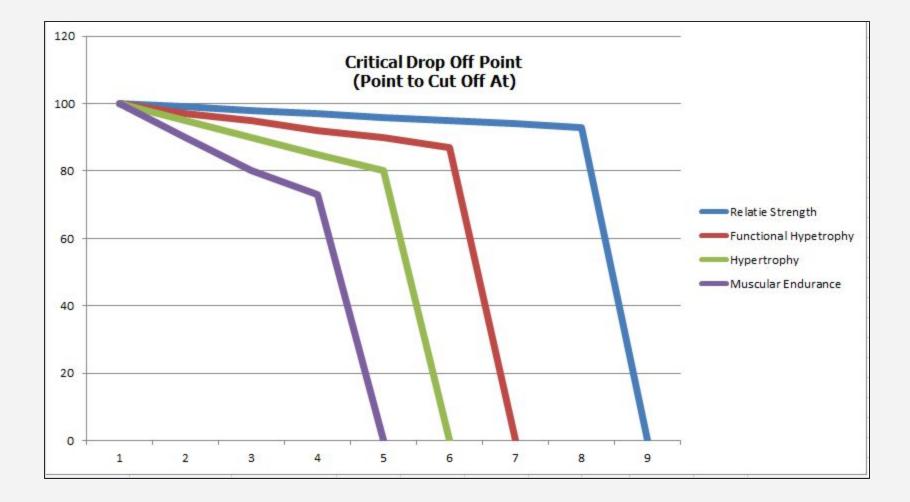
Manage workloads to delay critical drop off

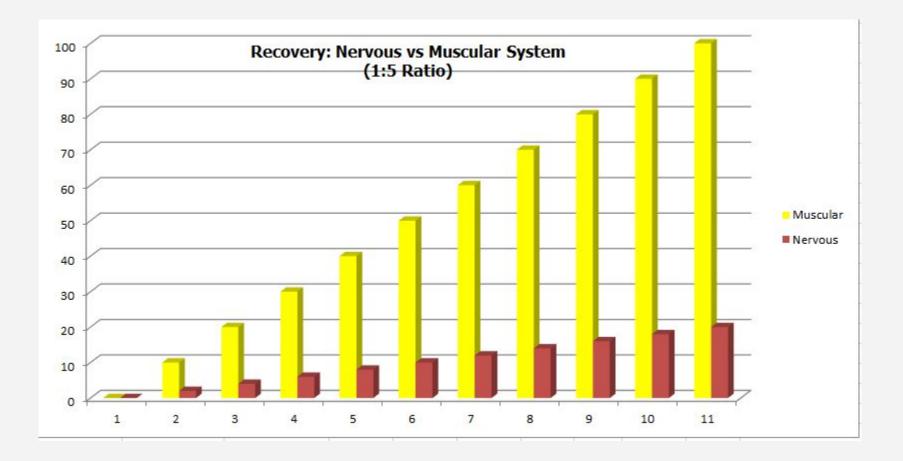
- How do we manage?

HRV/HRR/Relative Intensity during session

- How do we govern?

Energy System Overview

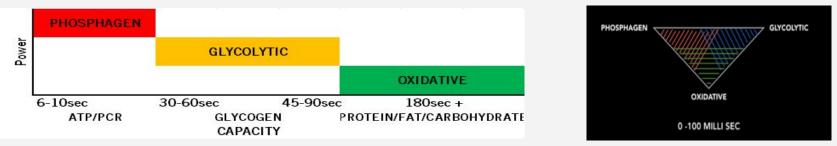

- Understand fatigue as a limiting factor
- Use that to understand appropriate upper limit density wise
- Increase recovery by organizing training by training session, microcycle, mesocycle and mesocycle
- Optimal volume does exist we just do not know if it is enough
 - Critical Drop Off Determines how much
 - Delay that as long as possible by developing pathways that expedite recovery


Optimize Volume Through Delaying Critical Drop Off

Critical Drop Off

There should be no more than 10% intensity range for given rep bracket

- Relative Strength (TUT 1-20s): 7% Drop
 - Rep Range (1 Rep): 2-3, 3-4, 4-5, 5-6
- Functional Hypertrophy (TUT 20-40s): 13% Drop
 - Rep Range (2 Reps): 4-6, 6-8. 8-10 Reps
- Hypertrophy (TUT 40-70s): 18% Drop
 - Rep Range (4 Reps): 6-10, 8-12, 10-14 Reps
- Strength Endurance (TUT >70s): 20% Drop
 - Rep Range (5 Reps): 10-15, 15-20, 20-25 Reps



Power vs Capacity

Power is 100% <u>without</u> Regard for Repeatability

Capacity is the Highest % <u>with</u> Regard for Repeatability

- The primary difference with replenishing energy substrates:
 - Phosphagen ATP/PCR
 - Glycolytic Glucose/Glycogen (Constant)
 - Oxidative Glycogen/Fatty Acids/Amino Acids (Constant)

Testing

- VO2 Max
 - 15.3 x (Max HR/Resting HR)
- Max HR
 - 220 Age (Most common formula)
 - 207 0.7 x Age (Adjusted for people over the age of 40)
 - 211 0.64 x Age (Adjusted for generally active people)
- Anaerobic Threshold
 - 85-90% Max HR
- Blood Glucose
 - Pre Fasting <90mg/dL
 - Intra 130-200mg/dL
 - 1hr Post <130mg/dL

Cardiac Output

- CO = Stroke Volume * Heart Rate
 - SV = End Diastolic Volume End Systolic Volume
- V02 Max Improvement
 - Novice 50% improvements are attributed to increased stroke volume
 - Advanced 30% of improvements are attributed to increased stroke volume
 - 8-10% are attributed to increases in maximal oxygen extraction
 - 60% are attributed to improved movement economy and increased pulmonary diffusion

TARGET ZONE	INTENSITY % OF HRmax	EXAMPLE INTERVAL DURATIONS	PHYSIOLOGICAL BENEFIT/ TRAINING EFFECT
5 MAXIMUM	90-100%	o-2 minutes	>Tones the neuromuscular system >Increases maximum sprint race speed
4 HARD	80-90%	2-10 minutes	>Increases anaerobic tolerance >Improves high speed endurance
3 MODERATE	70-80%	10-40 minutes	>Enhances aerobic power >Improves blood circulation
2 LIGHT	60-70%	40-80 minutes	>Increases aerobic endurance >Strengthens body to tolerate higher intensity training >Increases fat metabolism
1 VERY LIGHT	50-60%	20-40 minutes	>Helps and speeds up recovery after heavier exercises

Managing Capacity

- RHR ANS Balance Stroke Volume
 - >65bpm/min Poor
 - < 50bpm/min Excellent
- Blood Pressure Pressure in Vascular System Vagal Tone
 - Dialostic BP > 80 Poor
 - Dialostic BP < 70 Excellent
- HRV System Variability
 - < 40ms Poor
 - >75ms Excellent
- HRR CNS Fatigue
 - Parasympathetic Input Between Sympathetic Input
 - < 25bpm/min Poor
 - > 50bpm/min Excellent

Training Session Arrangement

- Movement Prep: Zone 1-2 (50-70%)

- Increase potential/Reduce Risk
- Raise Body Temperature More O2 Delivery
- Ramp Up Contraction: Force/Velocity
- Increase ROM/Improve Movement Function

- Training Session: Zone 4-5 (80-100%)

- Block Singular Stimulus
 - Manage work to rest (Density Inversely Proportional to Fatigue)
 - Antagonist Pairings
- Mixed Varied Stimulus
 - Organize based on rate of fatigue High CNS to Low CNS
 - Maintain Structural Balance

- Post Work: Zone 1-2 (50-70%)

- Remove fatigue substrates
- CNS Reset Need PNS after SNS

Microcycle Session Arrangement

- Duration
 - Low: 150-180min of Zone 2-3
 - High: 10-30min in Zone 4-5
- Length
 - 5D Lower, Upper, Rest, Total, Rest
 - 7D Lower, Upper, Rest, Lower, Upper, Rest, Rest
 - 7D Total, Rest, Total, Rest, Total, Rest, Rest
- High-Low
 - 5D High, Low, Rest, High, Rest
 - 7D High, Low, Rest, High, Low, Rest, Rest
 - 7D High, Low, High, Low, High, Rest, Rest
- Fiber Type
 - Fast Twitch More fatigue from High Days Less High Days
 - Slow Twitch Less Fatigue from High Days More High Days

Mesocycle Session Arrangement

- Length
 - 2 Microcycles M1 90%, M2 100%
 - 3 Microcycles M1 80%, M2 90%, M3 100%
 - 4 Microcycles M1 70%, M2 80%, M3 90%, M4 100%
 - 4 Microcycles M1 80%, M2 80%, M3 70%, M4 100%
- Rates of Change
 - Mesocycle to Mesocycle change of intensity: 8-15%
- Muscle Fiber Type
 - Fast Twitch Shorter Mesos, Larger Rates of Change
 - Eccentric Stress > Isometric/Concentric Stress Shorter Mesocycles
 - Slow Twitch Longer Mesos, Smaller Rates of Change
 - Isometric/Concentric Stress < Eccentric Longer Mesocycles

Macrocycle Session Arrangement

- Long to Short
 - Inhalation Bias
 - Fast Twitch
 - Poor Oxidative Function
- Short to Long
 - Exhalation Bias
 - Slow Twitch
 - Poor Anaerobic Phosphagen Function
- Highest Tonnage/High Intensity Yardage
 - Maximal Intensity
 - Rest Amount of Fatigue, Rate of Recovery

Take Home

- Get as close as possible to critical drop off maximal intensity
- Manage volume by maintaining intensity
- Organize training by how much someone may fatigue and how quickly they can recover
- Frameworks are based timeline and need
 - Eliminate noise if you are uncertain

Resources

8 Weeks Out

Key Concepts

Evan Peikon